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In this article, we investigate congruences satisfied by Apéry-like numbers.
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1. Introduction: Apéry Numbers

In his proof of the irrationality of ζ(3), R. Apéry introduced the numbers

αn =
n∑

j=0

(
n

j

)2 (
n + j

j

)2

, n ∈ N.

These numbers are now known as the Apéry numbers. Since the appearance of
Apéry’s work, properties of αn were gradually discovered. One of these is the
observation that for primes p ≥ 5,

αp ≡ α1 (mod p3). (1.1)

The congruence (1.1) was conjectured by Chowla et al. [6] and proved by Gessel [7],
who established the stronger result

αpn ≡ αn (mod p3). (1.2)

In this article, we investigate other sequences of integers {fn}∞n=1 that satisfy
relations similar to (1.2).
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Let

η(τ) = q1/24
∞∏

n=1

(1 − qn),

where q = exp(2πiτ) and Im(τ) > 0. It can be shown [10] that if

t1(τ) =
(

η(6τ)η(τ)
η(2τ)η(3τ)

)12

and F1(τ) =
η7(2τ)η7(3τ)
η5(τ)η5(6τ)

,

then

F1(τ) =
∞∑

n=0

αntn1 (τ) (1.3)

for suitably small |t1(τ)|. The identification of αn as the coefficients of certain power
series serves as a starting point for us in our search of other sequences {fn}∞n=1

satisfying congruences similar to (1.2).

2. The Domb Numbers

Consider the functions

t2(τ) =
(

η(2τ)η(6τ)
η(τ)η(3τ)

)6

and F2(τ) =
(η(τ)η(3τ))4

(η(2τ)η(6τ))2
.

It can be shown [2, (4.14)] that when |t2(τ)| is sufficiently small, we have

F2(τ) =
∞∑

n=0

(−1)nβntn2 (τ) (2.1)

where

βn =
n∑

j=0

(
n

j

)2 (
2j

j

) (
2(n − j)
n − j

)
.

The sequence {βn}∞n=1 turns out to satisfy the congruence

Theorem 2.1. For primes p ≥ 5,

βpn ≡ βn (mod p3).

Proof. The method of proof given here is due to Gessel [7]. For a prime p ≥ 5, we
find that

βpn =
pn∑
j=0

(
pn

j

)2 (
2j

j

) (
2(pn − j)
pn − j

)

= S1 + S2, (2.2)

where

S1 =
n∑

j=0

(
pn

pj

)2 (
2pj

pj

) (
2p(n − j)
p(n − j)

)
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and

S2 =
p−1∑
k=1

n−1∑
m=0

(
pn

k + pm

)2 (
2(k + pm)
k + pm

) (
2(pn − k − pm)
pn − k − pm

)
.

Now,

S1 ≡
n∑

j=0

(
n

j

)2 (
2j

j

) (
2(n − j)
n − j

)
(mod p3)

since [8] (
pa

pb

)
≡

(
a

b

)
(mod p3) for primes p ≥ 5. (2.3)

Therefore,

S1 ≡ βn (mod p3). (2.4)

For 0 < k < p, we have [7](
pn

k + pm

)
≡ (−1)k pn

k

(
n − 1

m

)
(mod p2).

Hence,

S2 ≡ p2n2

p−1∑
k=1

1
k2

n−1∑
m=0

(
n − 1

m

)2

×
(

2k + 2pm

k + pm

) (
2(pn − k − pm)
pn − k − pm

)
(mod p3). (2.5)

In order to prove that

S2 ≡ 0 (mod p3),

it suffices to show that
p−1∑
k=1

1
k2

n−1∑
m=0

(
n − 1

m

)2 (
2k + 2pm

k + pm

) (
2(pn − k − pm)
pn − k − pm

)
≡ 0 (mod p). (2.6)

By Lucas’ congruence [9],(
a + pb

c + pd

)
≡

(
a

c

) (
b

d

)
(mod p). (2.7)

Hence, we deduce that
p−1∑
k=1

1
k2

n−1∑
m=0

(
n − 1

m

)2 (
2k + 2pm

k + pm

)(
2(pn− k − pm)
pn − k − pm

)

=
p−1∑
k=1

1
k2

n∑
m=1

(
n − 1
m − 1

)2 (
2k + 2p(m − 1)
k + p(m − 1)

) (
2(pn − k − p(m − 1))
pn − k − p(m − 1)

)

≡
p−1∑
k=1

1
k2

n∑
m=1

(
n − 1
m − 1

)2 (
2k

k

) (
2(m − 1)
(m − 1)

) (
2(n − m)
n − m

) (
2(p − k)
p − k

)
(mod p).
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But for 1 ≤ k ≤ p − 1,

p

∣∣∣∣
(

2k

k

)
or p

∣∣∣∣
(

2(p − k)
p − k

)
.

Hence, (
2k

k

) (
2(p − k)
p − k

)
≡ 0 (mod p),

and we deduce (2.6).

A simple corollary of Theorem 2.1 is that

βp ≡ β1 ≡ 4 (mod p3)

for all prime numbers p > 3.

3. Almkvist–Zudilin Sequence

The study of the sequence {βn}∞n=1 is inspired by the fact that αn appears as
the coefficients of the power series given by (1.3). As we have seen above, βn are
coefficients of the power series given by (2.1). There is a third sequence that behaves
similarly to both αn and βn. To motivate our discovery of this third sequence, we
observe that F1 and F2 are modular forms associated with Γ0(6)+6 and Γ0(6)+3

respectively. Naturally, one would expect to have a third sequence arising from
Γ0(6)+2. Indeed, in [5] it was shown that if

t3(τ) =
(

η(3τ)η(6τ)
η(τ)η(2τ)

)4

and F3(τ) =
(η(τ)η(2τ))3

η(3τ)η(6τ)
,

and |t3(τ)| is sufficiently small, then

F3(τ) =
∞∑

n=0

(−1)nγntn3 (τ),

where γn are the Almkvist–Zudilin numbers [1], given by

γn =
�n/3�∑
j=0

(−1)j 3n−3j(3j)!
(j!)3

(
n

3j

) (
n + j

j

)
. (3.1)

The numbers γn appear to satisfy the congruence

Conjecture 3.1.

γpn ≡ γn (mod p3)

for all primes p > 3.

We have been unable to give a proof of Conjecture 3.1 as Gessel’s method does
not seem to work in this case.



March 3, 2010 10:9 WSPC/S1793-0421 203-IJNT S1793042110002879

Congruences Satisfied by Apéry-Like Numbers 93

4. Yang–Zudilin Sequence

For positive integers k and n, let

yk,n =
n∑

j=0

(
n

j

)k

.

Around 2003, Zudilin realized that y4,n is associated with a certain modular form
and modular function as in the case for the Apéry numbers, Domb numbers and
the Almkvist–Zudilin numbers. This form and function were eventually obtained
by Yang [11] (see [4] for the explicit forms of the form and function).

In this section, we will deduce that for primes p ≥ 7,

y4,p ≡ y4,1 ≡ 2 (mod p5)

by showing the following more general result:

Theorem 4.1. Suppose k is even, and p > 3 is a prime number for which p−1 � k.
Then

yk,p ≡ 2 (mod pk+1).

Proof. Observe that

p

∣∣∣∣
(

p

j

)
for 1 ≤ j ≤ p − 1.

Hence it suffices to show that

p

∣∣∣∣∣
p−1∑
j=1

(
(p − 1)!

j!(p − j)!

)k

. (4.1)

Now

(p − 1)!
j!(p − j)!

=
1
j

p−j∏
i=1

p − i

i
≡ 1

j
(−1)p−j (mod p).

Thus, since k is even,
p−1∑
j=1

(
(p − 1)!

j!(p − j)!

)k

≡
p−1∑
j=1

1
jk

≡
p−1∑
j=1

jk (mod p). (4.2)

But
p−1∑
j=1

jk ≡
{

0 (mod p), if p − 1 � k,

−1 (mod p), if p − 1 | k.
(4.3)

By hypothesis p− 1 � k, therefore (4.1) follows from (4.2) and (4.3). This completes
the proof.

Theorem 4.1 does not have a generalization modulo pk+1 similar to Theorem 2.1.
However, we have the following result:

Theorem 4.2. Let p > 3 be prime and let k > 1 be an integer. Then

yk,pn ≡ yk,n (mod p3).
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Proof. When k = 2 we have

y2,n =
n∑

j=0

(
n

j

)2

=
(

2n

n

)
,

so

y2,pn =
(

2pn

pn

)
≡

(
2n

n

)
≡ y2,n (mod p3)

by (2.3). This establishes the result for k = 2. For the remainder of the proof,
suppose k ≥ 3 and write

ypn =
pn∑

j=0

(
pn

j

)k

= T1 + T2,

where

T1 =
n∑

j=0

(
pn

jp

)k

,

and

T2 =
p−1∑
j=1

n−1∑
m=0

(
pn

j + pm

)k

.

Using (2.3), we deduce

T1 ≡ yn (mod p3).

Next, we rewrite T2 as

T2 =
p−1∑
j=1

n−1∑
m=0

(
pn

j + pm

)k

=
p−1∑
j=1

n−1∑
m=0

(
p + p(n − 1)

j + pm

)k

. (4.4)

By (2.7), we find that(
p + p(n − 1)

j + pm

)
≡

(
n − 1

m

) (
p

j

)
≡ 0 (mod p).

This implies that for k ≥ 3 and 1 ≤ j ≤ p − 1,
(

p + p(n − 1)
j + pm

)k

≡ 0 (mod p3). (4.5)

Substituting (4.5) into (4.4), we conclude that

T2 ≡ 0 (mod p3)

and this completes the proof of Theorem 4.2.

5. Other Sequences

We hope that we have illustrated that sequences arising from the study of modular
forms serve as a good source of numbers satisfying interesting congruences modulo
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certain power of primes. We end this article with a series of conjectures associated
with various modular forms. The letter p always denotes a prime number.

Conjecture 5.1. If

z2 =
∞∑

m=−∞

∞∑
n=−∞

qm2+n2
and x2 =

η12(2τ)
z6
2

and

z2 =
∞∑

n=0

f2,nxn
2 ,

then

f2,pn ≡ f2,n (mod p2) when p ≡ 1 (mod 4).

Conjecture 5.2. If

z3 =
∞∑

m=−∞

∞∑
n=−∞

qm2+mn+n2
and x3 =

η6(τ)η6(3τ)
z6
3

and

z3 =
∞∑

n=0

f3,nxn
3 ,

then

f3,pn ≡ f3,n (mod p2) when
(p

3

)
= 1.

Conjecture 5.3. If

z5 =
η5(τ)
η(5τ)

and x5 =
η6(5τ)
η6(τ)

and

z5 =
∞∑

n=0

f5,nxn
5 ,

then

f5,pn ≡ f5,n (mod p3) for all primes p, including p = 2.

Conjecture 5.4. If

z7 =
∞∑

m=−∞

∞∑
n=−∞

qm2+mn+2n2
and x7 =

η3(τ)η3(7τ)
z3
7

and

z7 =
∞∑

n=0

f7,nxn
7 ,

then

f7,pn ≡ f7,n (mod p2) when
(p

7

)
= 1.
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Conjecture 5.5. If

z11 =
∞∑

m=−∞

∞∑
n=−∞

qm2+mn+3n2
and x11 =

η2(τ)η2(11τ)
z2
11

and

z11 =
∞∑

n=0

f11,nxn
11,

then

f11,pn ≡ f11,n (mod p2) when
( p

11

)
= 1.

Conjecture 5.6. If

z23 =
∞∑

m=−∞

∞∑
n=−∞

qm2+mn+6n2
and x23 =

η(τ)η(23τ)
z23

and

z23 =
∞∑

n=0

f23,nxn
23,

then

f23,pn ≡ f23,n (mod p) when
( p

23

)
= 1.

Conjecture 5.7. If

Z23 =
∞∑

m=−∞

∞∑
n=−∞

q2m2+mn+3n2
and X23 =

η(τ)η(23τ)
Z23

and

Z23 =
∞∑

n=0

F23,nXn
23,

then

F23,pn ≡ F23,n (mod p) when
( p

23

)
= 1.

Remarks. One can verify that

f2,n = 64n

(
1
4

)2

n

(n!)2
and f3,n = 108n

(
1
6

)
n

(
1
3

)
n

(n!)2
,

where (a)k = a(a+1)(a+2) · · · (a+k−1). There are no known closed forms for fr,n

for r = 5, 7, 11 and 23 but they satisfy certain recurrence relations. The functions
zr and xr , for r = 3, 7, 11 and 23, were studied in [3].
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